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Abstract

There are many machine learning algorithms currently
available. In the 21st century, the problem no longer lies in
writing the learner, but in choosing which learners to run
on a given data set. In this paper, we argue that the final
choice of learners should not be exclusive; in fact, there are
distinct advantages in running data sets through multiple
learners.

To illustrate our point, we perform a case study on a
reuse data set using three different styles of learners:as-
sociation rule, decision tree induction, and treatment. Soft-
ware reuse is a topic of avid debate in the professional and
academic arena; it has proven that it can be both a blessing
and a curse. Although there is much debate over where and
when reuse should be instituted into a project, our learners
found some procedures which should significantly improve
the odds of a reuse program succeeding.

KEYWORDS: AI algorithms, AI in software engineer-
ing, AI in data mining, machine learning, reuse, empirical
studies, treatment learning, association rule learning, deci-
sion tree learning, C4.5, J4.8, J4.8 PART, APRIORI, TAR2.

1 Introduction

In the 21st century, there are too many machine learning
tools. Users are overwhelmed with possibilities, and choos-
ing which learners to apply to their data can be a daunting
task. The challenge now is not in building or designing a
learner, but in sorting through the reams of mature and effi-
cient ones in order to find a subset which will prove useful.

A problem just as prolific and important as choosing
which learners to run is making sure that you have run

1Submitted to the 14th IEEE International Conference on Tools with
Artificial Intelligence, November 4-6, 2002 Washington D.C.http:
//www.nvc.cs.vt.edu/ictai2002/ . August 25, 2002. Wp
ref: http://www.csee.wvu.edu/˜justin/wp/02/toolsai/
swreuse.tex

Attribute Morisio et.al. this paper
state:
Application Domain Not analyzed ×
Size of Baseline Not analyzed X
Production Type X ×
high-level control:
Top Management Commitment X ×
low-level control:
Reuse Approach × X
Domain Analysis × X

Figure 1. Conclusions where we disagree with
Moriso et.al. ×/X= no/some evidence (re-
spectively) in this data set that this attribute
is relevant to determining success or failure
of a reuse project.

enough to produce a stable and viable conclusion. When
faced with the task of choosing a proper subset of learners,
our belief is that researchers stop to soon, i.e. they derive
their conclusions after running just one learner. However,
with the relative ease of running multiple learners, there is
no reason why those results cannot be cross-checked with
other tools. In fact, running multiple learning algorithms on
a data set can produce quite varied and useful results.

To illustrate this point, we use the data set from Mori-
sio et.al.’s “Success and Failure Factors in Software En-
gineering” [18]. This data is a collection of interview re-
sults with industrial projects involved in the introduction of
reuse. The interviews were performed by Morisio, Ezran,
and Tully [18]. The industrial projects presented are a sub-
set of 288 Process Improvement Experiments funded by the
European Commission. In each case, the project was cho-
sen because it represented a serious attempt at implement-
ing a reuse process.

In their paper, the researchers (Morisio,et.al.) ran the
CART [5] machine learner on their data set (a list of suc-
cess and failure cases for the implementation of a software



reuse program in various corporations), and drew their con-
clusions based on it’s output. However, we show here that
if further learning (using other learning algorithms) is per-
formed on the data set, some different (and essential) results
can be produced. Figure 1 highlights the differences be-
tween our results and those obtained by Morisioet.al. For a
full listing of all the attributes collected, please refer to the
original article [18].

In reevaluating the data from the above mentioned pa-
per, the J4.8 [13], J4.8 PART [13], APRIORI [2], and
TAR2.2 [22] machine learners were run on the data set.
J4.8 is adecision tree induction learner(based on C4.5),
which operates by splitting data into subsets for each par-
ticular value of an attribute. J4.8 PART findsclassification
rulesbased on partial decision trees (specifically, the deci-
sion trees produced by J4.8). APRIORI is anassociation
rule learner, in that it attempts to find associations between
various attributes of the data set. Finally, TAR2.2 is atreat-
ment learner. A treatment learner uses an algorithm which,
instead of finding classifications or associations, attempts
to find one, or a conjunction of, attribute ranges which pre-
dict for an increased frequency of the best class, and/or a
decreased frequency of the worst [22]. This is especially
useful in cases where a best and worse class can easily be
defined, such as with the success and failure of a software
reuse program.

The rest of this paper shows how we generated Figure 1.
We will show that using a variety of learners on a data set
(instead of limiting oneself to a single class of machine
learner) can produce more definitive and useful results. We
will also present some conclusions about the various fac-
tors which can effect the potential success (or failure) of a
software reuse program.

2 Background

2.1 Learning

The goal of learning is to find important patterns in data
sets. Analyzing these data sets by hand is problematic at
best, and can take substantial time and effort. It is both
quicker and easier if a computer can be “taught” to search
for these patterns. In order to facilitate this, many different
types of learners have evolved, including (but not limited
to) decision tree learners, classification rule learners, asso-
ciation rule learners, andtreatment learners. Each of these
machine learners was used in our analysis of the data set;
they are described in the following sections.

2.1.1 Decision Tree Learners and J4.8

Decision Tree Learners attempt to find paths which arrive
at a specific class instance. J4.8, specifically, uses a method

called decision tree induction. In this method, data is split
using a standard recursive splitting technique, which pro-
duces a decision tree whose leaf nodes contain training ex-
amples of one class [12]. This means that the output of the
J4.8 algorithm is a “decision tree”, garnered from the pro-
vided data, which suggests a path that can be taken in order
to arrive at a specific class instance, i.e. success. J4.8 is a
java port of the C4.5 algorithm [21].

C4.5 uses a heuristicentropy measure of information
content to build its trees. The attribute that offers the largest
information gainis selected as the root of a decision tree.
The example set is then divided up according to which ex-
amples do/do not satisfy the test in the root. For each di-
vided example set, the process is then repeated recursively.

The information gain of each attribute is calculated as
follows. A treeC containsp examples of some class andn
examples of other classes. Theinformation requiredfor the
treeC is as follows:

I(p, n) = −
(

p

p + n

)
log2

(
p

p + n

)
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n
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)
log2

(
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Say that some attributeA has valuesA1, A2, ...Av. If we
selectAi as the root of a new sub-tree withinC, this will
add a sub-treeCi containing those objects inC that haveAi.
We can then define the expected value of the information
required for that tree as the weighted average:

E(A) =
v∑

i=1

(
pi + ni

p + n

)
I(pi, ni)

The information gain of branching onA is therefore:

gain(A) = I(p, n)− E(A)

2.1.2 Classification Rule Learners and J4.8 PART

A classification rule learner operates by identifying a rule
that covers instances in a specific class (and excludes ones
not in the class), separates them out, and continues learn-
ing on the remaining instances [13]. More specifically, J4.8
PART is apartial decision tree rulelearner. The algorithm
parses the pruned decision trees output by the J4.8 algo-
rithm, and searches for rules which can be deduced from
the tree. In some cases, classification rules can be signifi-
cantly more compact and easier to read than decision trees.
In addition, rules are often preferred to decision trees since
each rule seems to represent an independent “nugget” of
knowledge [13].

2.1.3 Association Learners and APRIORI

Association rule learners are a generalization of classifica-
tion rule learners; they can predict for any attribute of the
data set, not just the class [13]. Association rule learners
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can find significant inter-relationships between attributes.
For example, APRIORI often reveals that some attributes
predict for others. In these cases, it maybe useful to re-
move the dependent attribute(s), since they are unnecessary
during evaluation, and tend to slow down and confuse the
learning process.

2.1.4 Treatment Learners and TAR2

Treatment learners differ from most other learners in that
instead of attempting to find a predictor for a class, they
attempt to find atreatmentwhich predicts for an increased
frequency of the best class and a decreased frequency of the
worst. This type of learner is extremely useful when you
are evaluating a data set which has clearly ordered classes
(i.e., success and failure).

TAR2 seeks attribute ranges that occur more frequently
in the highly scored classes than in the lower scored
ones[22], and produces various rules based on those at-
tributes. It also allows for the selection of how many at-
tributes should be used to produce a rule. This allows for
the production of a varied and extensive set of rules which
can involve only a single attribute range, or a range for ev-
ery attribute present in the data set. A detailed description
of the mining algorithm for TAR2 follows.

TAR2 seeks attribute ranges that occur more frequently
in the highly scored classes than in the lower scored classes.
Let a.r. be some attribute range, e.g.DomainAnalysis =
yes, then∆a.r. is a heuristic measure of the worth ofa.r.
to improve the frequency of thebestclass. ∆a.r. uses the
following definitions:

X(a.r.) : is the number of occurrences of that attribute range in class X;
e.g.success(DomainAnalysis.yes) = 9.

all(a.r.) : is the total number of occurrences of that attribute range in all
classes; e.g.all(DomainAnalysis.yes) = 9

best : the highest scoring class; e.g.best = success.

rest : the non-best class; e.g.rest = failure.

score : the score of a class X is $X.

Using these definitions,∆a.r. is calculated as follows:

∆a.r. =

P
X∈rest($best− $X) ∗ (best(a.r.)−X(a.r.))

all(a.r.)

A treatmentis a subset of the attribute ranges with an
outstanding∆a.r. value. Toapplya treatment, TAR2 rejects
all example entries that contradict the conjunction of the at-
tribute ranges in the treatment. The ratio of the classes in the
remaining examples is compared to the ratio of classes in
the original example set. Thebest treatmentis the one that
most increases the relative percentage of preferred classes
[22].

2.1.5 Comparison

It is difficult to find a paper, article, or study which com-
pares multiple learning algorithms. Many people have writ-
ten or spoke about the various benefits and problems with
different learners, but normally those studies refer only to
learners in the same class (such as classification learners).
However, there are exceptions.

Almeida and Lounis did a study on the use of machine
learned models for estimating correction costs [16]. In their
article, they compare the NewID [4], CN2 [6], C4.5 [21]
and FOIL [20] machine learning algorithms. They conclude
that

The results show that the inductive logic program-
ming algorithms [FOIL], are superior to the top-
down induction decision tree, top-down induction
attribute value rules, and covering algorithms ...

While their conclusion is born out by their data and test-
ing techniques, they make no mention of the fact that while
the FOIL learner may have performed better in their test, it
would behoove the practicing researcher to tryall the avail-
able learners before attempting to reach a conclusion about
their data set.

3 The Tests

In the following sections, we provide the breakdown of
our testing methods and results, and those from Morisio
et.al.’s study.

3.1 Morisio et.al.’s Test

In their study, Morisioet.al. chose to separate the at-
tributes from the data set into three classes, namelyState
Variables, High-Level Control Variables, and Low-Level
Control Variables. They define the different classes in this
way:

• State Variables - Attributes over which a company has
no control.

• High-Level Control Variables - Key high-level man-
agement decisions about a reuse program.

• Low-Level Control Variables - Specific approaches to
the implementation of reuse.

Furthermore, Morisioet.al.chose to restrict their analysis to
the state and high-level control variables. Their reasoning is
that the high-level control variables temporally and/or logi-
cally precede the low-level control variables. For instance,
they say

...a decision to introduce reuse processes both
logically and temporally precedes a decision

3



about whether to perform domain analysis and
about when to to develop assets.

While the reasoning for breaking up the attributes is
sound, Morisioet.al.’s conclusions are skewed by their
choice to exclude the low-level control variables. One of
their main conclusions was thatnot addressing two or more
high-level control variables led to failure [18]. Having said
this, however, they saynothing aboutwhich specific ap-
proach to take in the implementation of reuse (for example,
which reuse-specific processes to implement). In essence,
their conclusions tell a company where to go without giv-
ing them the directions on how to get there.

When analyzing a data set, it is important thatall the
attributes be properly analyzed. Otherwise, important pat-
terns and information may be missed. This was the problem
with Morisio et.al.’s analysis of the data set. By choosing
to exclude certain attributes, they have inappropriately con-
strained their learner and limited the scope of their conclu-
sions.

3.2 Our Tests

In analyzing this data set, we have left all the vari-
ables intact and unclassified (with the sole exception of
theRepositoryattribute, which was excluded when running
APRIORI because it has value “yes” for all cases). In addi-
tion, we have run a selection of various machine learners in
order to ensure that all available patterns are discovered.

For each machine learner, we compare our results with
those from the original paper (by Morisioet.al.) [18]. The
learners are presented in the order in which they were run.

In order to validate the results from the learners, a com-
mon practice called 10-way cross validation was performed.
In this scheme, the data set is split into 10 separate pieces,
each with the same distribution of classes. The algorithms
then learn on 9 of the sets, and test the learned model on
the 10th. If the error rate during cross validation is low (the
exact definition oflow can vary, depending on the domain
and data set your are working with), then the learned model
can be considered valid.

3.2.1 APRIORI

APRIORI was run first, since it is useful to know about
any dependencies in a data set before running other learn-
ing algorithms. Results from APRIORI must be eval-
uated carefully, however, since some dependencies will
appear which have no “real-world” meaning. What we
are looking for from the output of APRIORI is a de-
pendency which can be linked to a real-world situation,
such asTopManagementCommitment = no ==>
RewardsPolicy = no. In this data set, however, no such

conclusions were found. Since APRIORI failed to gener-
ate a usable dependency, it neither confirmed nor denied the
conclusions of Morisioet.al.

3.2.2 J4.8

In this test, the data was run through the J4.8 machine
learner without any modifications. The class was simply
the success or failure of the software reuse program. The
resulting tree used only one attribute,Human Factors. The
tree is shown below.

Human Factors = yes: success (16.0/1.0)
Human Factors = no: failure (8.0)

This tree has an error rate, in 10 way cross-validation, of
just 4.2%.

After running the above test, we removed the attribute
Human Factors from the data, and ran J4.8 again. The re-
sulting tree is show below.

Reuse Processes Introduced = yes: success (15.0/1.0)
Reuse Processes Introduced = no: failure (8.0/1.0)
Reuse Processes Introduced = NA: failure (1.0)

The error rate on this decision tree, after running 10 way
cross-validation, is 20.8%. As you can see, this tree also
only uses one attribute,Reuse Processes Introduced.

The original evaluation performed by Morisioet.al.used
a machine learner called CART. CART is very similar to
J4.8, and also produces a decision tree. That decision tree
is shown below.

Human Factors = yes:
Type of software production = product-family: success
Type of software production = isolated: failure

Human Factors = no: failure

The difference between the two algorithms is evident in
their outputs. J4.8 is driven to find the simplest tree possible
with an acceptable failure rate, while CART is attempting to
find the tree with the lowest failure rate, regardless of sim-
plicity. In this case, the CART algorithm was successful in
finding a tree with a 0% failure rate by using two attributes.

3.2.3 J4.8 PART

Rule learners like J4.8 PART can simplify complicated de-
cision trees. In this study, the decision trees from§3.2.2
are very simple. Therefore, the output from J4.8 PART is
nothing more than a simple restatement of those trees. For
completeness’ sake, the output from the J4.8 PART algo-
rithm is shown below for both of the decision trees from
§3.2.2.

FIRST TREE:
Human Factors = yes: success (16.0/1.0)
: failure (8.0)
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SECOND TREE:
Reuse Processes Introduced = yes: success (15.0/1.0)
: failure (9.0/1.0)

Once again, these results closely agree with the tree pro-
duced by CART.

3.2.4 TAR2

As was discussed above, TAR2 is a “Treatment Learner”,
which can produce very different results than normal clas-
sification and decision tree learners. Running this learner
generated 3 stable (under 10 way cross-validation) and use-
ful results. As was explained above, the results from TAR2
are attribute ranges which select for the best class (in this
case, success). The 3 attribute ranges which are most useful
in selecting for success of a reuse project are:

Size of Baseline = L
Domain Analysis = yes
Reuse Approach = tight

None of these attributes appear in the original evaluation
performed by Morisioet.al. This is a combination of the
choice by Morisioet.al. to leave out the low-level control
variables, and a result of the limiting depth of running only
a single learner.

4 Conclusions

Our conclusions take 2 forms:

• About reuse
• About learning

§4.1 will present a general decision path to use when insti-
tuting a reuse program, and§4.2 will present our view on
the use of multiple machine learning algorithms.

4.1 Software Reuse

After applying multiple machine learners, several con-
clusions can be drawn about the potential success of a reuse
program. First and foremost, and in agreement with Mori-
sioet.al.’s conclusions, the single largest deciding factor for
success is “Human Factors”. This conclusion makes sense,
as people are more likely to be successful in implementing
reuse if they are properly trained and aided in doing so.

Next, and in no particular order, the additional factors
effecting reuse are “Reuse Processes Introduced”, “Size
of Baseline”, ”Reuse Approach”, and ”Domain Analysis”.
To summarize the basic steps that should be taken in order
to increase the chance of success for a software reuse
program, we present a small rule table in two parts. The
first part is areas where we agree with the conclusions by

Morisio et.al., and the second is where our conclusions
differ from theirs.

IN AGREEMENT:
1. Train, aid, and entice people to write reusable code.
2. Introduce reuse specific processes.

DIFFERING:
3. Don’t bother trying to get reusable code out of small
projects.
4. Perform Domain Analysis.
5. Make sure that reusable work products are tightly
coupled.

These steps should aid in beginning a reuse program
in any company. In fact, based on the Morisioet.al. data,
our learners are telling us that these 5 simple steps will
increase the chances for success dramatically.

4.2 Multiple Learners

As we have shown, a single learner (or single type of
leaner) is not sufficient to find all the applicable patterns
buried in a data set. With the increasing speed and memory
capacity of computers, it is no longer a matter of days to
run an efficient machine learner; in many cases, it is not
even a matter of hours. Given the relative ease of running
multiple learners, our thesis is that a good analysis of a data
setshoulduse multiple learners.

Many mature machine learning tools are freely available
through public domain downloads. For example, the J4.8,
J4.8 PART, and APRIORI implementations used in this pa-
per came from the WEKA [13] toolkithttp://www.cs.
waikato.ac.nz/ml/weka/ . Also, our TAR2 machine
learner is available fromhttp://www.ece.ubc.ca/
twiki/bin/view/Softeng/TreatmentLearner .
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